Profiling HPC Application Resilience using DisCVar
Stephen Penton

Application resilience is an important part
of future HPC systems. Doing so through
exhaustive fault injection campaigns
comes at a cost. Exhaustive campaigns
are not practical for certain HPC
applications. Thus, using tools such as
DisCVar would allow us to:

 |dentify application variables
susceptible to faults

 Design targeted fault Injection
campaigns

Variable criticality is determined by an
estimated silent data corruption (SDC)
rate calculated via the derivatives from
the AD process and a given threshold.
Running DisCVar on our integration
application allows for the source code
to be highlighted based on SDC rates
for each line. Lines of note include 42,
43, and 47.

Estimated SDC Rate for Integral Test Application

Bl DisCVar
0.35-

0.30 -

SDC Rate
() o o
- NN
(8 | o (8 |

o
-
o

0.05 -

0.00 ————————————

Line Number

LA-UR-19-27073

Mentors: Dr. Nathan DeBardeleben and Terry Groveé

Background

DisCVar is a tool developed at LLNL that
uses Algorithmic Differentiation (AD) to
identify critical variables within an
application’s source code. AD is a
method of finding the derivative of a
program by applying the chain rule. A
partial derivative of the output is found
with respect to input and intermediate
variables. These are then used to rank
variables according to how critical they
are.

ELGWEWAE

The figure on the left describes the
DisCVar estimated SDC rates by line
number for our Integration test
application. The non-zero values
range from 0.02 to 0.38. Of these 9
SDC rates, 7 are greater than 0.20.

DisCVar's output facilitates the
identification of the most critical
variables within an application.

Y = 2% cosh |a + i ()]
* COS [a+l* N

DisCVar does introduce its own
overhead, albeit for only a single run
of the application. We see a runtime
increase of approximately 2 orders of
magnitude In our integration
application; VPIC experienced an
increase greater than 3 orders of
magnitude.

2

DisCVar Overhead
10" -

| HEE Integral Test Application
| Il VPIC

Runtime (s)

| I e

Without DisCVar

With DisCVar

Ultrascale Systems
Research Center

Methodology

* Annotate source code
 Recompile application
* Run to generate DisCVar output

These results can then be used to
design fault injection campaigns. In this
work, we applied DisCVar to a numerical
integration application and VPIC, an
HPC particle-in-cell simulation.

Annotate . Recompile and
Source Code Run Application

Design Fault

= Analyze
Injection . :
Campaign DisCVar Output

y

Fault Injection
Experiments

A continuation of this work would
Include:
 Exhaustive FSEFI fault injection

campaign on
application
* Further testing of DisCVar on VPIC
 Design and execution of FSEFI
campaign on VPIC using DisCVar
results.

integral test

. Los Alamos

NATIONAL LABORATORY
EST.1943 |

